1. Suppose that the temperature at each point of a thin metal plate is given by the function:
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The temperature function has four stationary points. 
a. Find them, and fill out the table below related to the second-partials test. Show your work.
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b. What are the coldest and warmest positions along the unit circle 
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(Lagrange method)

2. Let T be the solid bounded above by the hemisphere 
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 and below by the paraboloid 
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a. Sketch the two surfaces and by considering the traces of the surfaces in the xz − plane show that they intersect at the level z = 1. Also, sketch the projection of the solid T onto the xy-plane.

b. The flux out of the paraboloid is given by
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 where R is the projection of the solid T onto the xy-plane. Compute the integral.

3. Let T be the "ice cream cone" bounded below by the half-cone 
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, and above by the unit sphere x2 + y2 + z2 = 1.
a. Set up triple integrals for the volume of T in (i) rectangular, (ii) cylindrical, and (iii) spherical coordinates. Justify your limits of integration.

b. Compute the volume of T.

4. Consider the double integral below:
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a. Sketch the region that gives rise to the double integral above.

b. Change the order of integration, and evaluate. Explain your reasoning

5. For the integral
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Solve the following:

a. Sketch the solid T that gives rise to the triple integral below

b. Sketch the projection R of T onto the xy-plane

c. Evaluate using cylindrical coordinates.

6. Using spherical coordinates, find the volume of the solid on the first octant bounded above by the cone z2 = x2 +y2, below by the xy-plane, and on the sides by the sphere x2 +y2 +z2 = 4 and by the other two coordinate planes. Express each of the boundaries of the solid in spherical coordinates.
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Here is the chain rule for
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[image: image14.png]5. Find the sum of the given series.
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[image: image15.png]6. For each of the series given below, decids whether the series converges. Show your reasoning.
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